SOME ORTHOGONAL PROPERTIES OF THE 4 × 4 AND 6 × 6 LATIN SQUARES
نویسندگان
چکیده
منابع مشابه
Some Constructions of Mutually Orthogonal Latin Squares and Superimposed Codes
Superimposed codes is a special combinatorial structure that has many applications in information theory, data communication and cryptography. On the other hand, mutually orthogonal latin squares is a beautiful combinatorial object that has deep connection with design theory. In this paper, we draw a connection between these two structures. We give explicit construction of mutually orthogonal l...
متن کاملsome properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولA graph-theoretic proof of the non-existence of self-orthogonal Latin squares of order 6
The non-existence of a pair of mutually orthogonal Latin squares of order six is a well-known result in the theory of combinatorial designs. It was conjectured by Euler in 1782 and was first proved by Tarry [4] in 1900 by means of an exhaustive enumeration of equivalence classes of Latin squares of order six. Various further proofs have since been given [1, 2, 3, 5], but these proofs generally ...
متن کاملLecture 4 : 3 SAT and Latin Squares
This talk’s focus is on the computational complexity of completing partial Latin squares. Our first goal in this talk is to show that for many special classes of partial Latin squares, we can construct completions for these objects in polynomial time. From here, we will prove the fairly surprising claim that completing an arbitrary partial Latin square is an NP-complete task; so while it is “ea...
متن کاملNearly Orthogonal Latin Squares
A Latin square of order n is an n by n array in which every row and column is a permutation of a set N of n elements. Let L = [li,j ] and M = [mi,j ] be two Latin squares of even order n, based on the same N -set. Define the superposition of L onto M to be the n by n array A = (li,j ,mi,j). When n is even, L and M are said to be nearly orthogonal if the superposition of L onto M has every order...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Eugenics
سال: 1943
ISSN: 2050-1420
DOI: 10.1111/j.1469-1809.1943.tb02325.x